

A unified multi-touch & multi-pointer software architecture
for supporting collocated work on the desktop

Kelvin Cheng, Benjamin Itzstein, Paul Sztajer and Markus Rittenbruch

NICTA, Australian Technology Park, Level 5, 13 Garden Street, Eveleigh, NSW 2015, Australia
{firstname.lastname}@nicta.com.au

ABSTRACT
Most current multi-touch capable interactive user interfaces
for tabletop are built from custom toolkits that are
decoupled from, and on top of, the “Desktop” provided by
the underlying Operating System. However, this approach
requires that each individual touch system build their own
suite of touch capable custom applications (such as photo
browsers), usually resulting in limited functionality. In this
paper, we propose a software architecture for supporting
and integrating multi-touch capability on existing desktop
systems, where multi-touch and multiple single pointer
input can be used simultaneously to manipulate existing
application windows. We present an example
implementation of this architecture on the Linux Operating
System, demonstrating the possibility of using touch
displays in a collaborative work environment on the
tabletop. The paper concludes with lessons learnt and
technical challenges from our experience.

Author Keywords
Software architecture, multi-touch, tabletop, multiple
pointers.

ACM Classification Keywords
H5.3. Information interfaces and presentation (e.g., HCI):
Group and Organization Interfaces: Collaborative
computing, Computer-supported cooperative work.

INTRODUCTION
One aspect of the XYZ project focuses on collocated
collaborative work. We are particularly interested in
exploring novel interface technologies to improve
productivity of face-to-face collaboration around the
tabletop, specifically multi-touch capable tables.

Recently, multi-touch hardware technologies have gained
increasing attention both in the research community [7] and
the commercial world [13][17]. With these new
technologies, it is now possible to allow the use of natural
hand gestures to interact with virtual objects and
applications collaboratively.

One of the main challenges in using these new multi-touch
technologies is the fact that the major desktop Operating
Systems (Linux, Mac OS and Windows) do not have the
ability to natively support multiple pointers. Although

recently Windows 7 [5] does provide limited multi-touch
capability for specific applications and MacOS X does
support multi-finger gestures on the trackpads for specific
commands, a general underlying OS-wide multi-touch
capability is not found.

For multi-touch application developers, the most common
approach is then to develop custom applications that are
written in an abstracted environment on top of the
traditional desktop environment, to provide additional
interpretation of multi-pointer inputs, as well as multiple
hand inputs and gestures. However, this decouples the
multi-touch input from the functionality provided by the
underlying Operating System. Specific UI widgets must
then be implemented to allow users to access the OS
resources. This is both time consuming and redundant, and
often results in simple applications that have limited
functionality (e.g. photo browsing) compared to
applications developed for traditional desktop environment
(e.g. office productivity applications). Another drawback is
that the user interfaces will not be consistent between these
custom platforms provided by different developers.

In this paper, we propose an architecture that brings
together the functionality and user interface provided by
existing “legacy” applications – applications that only
understands a single pointer – and the advantages that new
types of multi-user-capable input methods provide.
Specifically, our goal is to allow multiple pointers, touches
and natural hand gestures to be easily integrated and used
with the traditional Desktop environment, without the need
for writing custom applications (yet still retains the ability
to use custom applications on top of the Desktop). Our
approach will also enable users to simultaneously scale,
translate and rotate application windows to collaboratively
work around a tabletop surface. We will demonstrate the
use of our architecture with an example implementation on
the Linux Operating System.

RELATED WORK
To position our work, we present a brief overview of
literatures and related work involved in various aspects of
building multi-touch capable applications.

Touch Libraries
Touch libraries detect touch events in the form of fingers,
hands, and objects of various shapes and sizes. The
hardware used determines the approaches, capabilities and
limitations of various techniques. The most commonly
found systems are vision-based. Community Core Vision
(CCV) [2] is a popular open source multi-touch library
(formerly referred to as tbeta and Touchlib). It uses various
computer vision and image processing techniques on video
input streams and produces tracking data such as fingertip
coordinates and touch events such as finger down. It is
designed to work with a range of vision-based hardware
platforms. In constrast, DiamondSpin [18] is another well
known touch library but it is specifically used for the
DiamondTouch interactive display.

Touch Event Protocols
In many cases, the data about touch events that are sent
from its underlying hardware level is specific to the
individual hardware, and as such is only available to custom
applications that utilize the manufacturer's SDK.

Recently, hardware devices and touch libraries have been
adopting TUIO [11], a touch event protocol developed to
allow for hardware-independence in tabletop systems. It
allows developers to easily detect touches on a custom-built
tabletop and exports TUIO events.

A different approach has been taken by the developers of
SparshUI [19]. SparshUI is a development framework for
multi-touch enabled applications, which includes a gesture
server. SparshUI developers have created drivers for several
types of hardware devices that communicate directly with
the gesture server.

Multi-touch Interface Toolkits
The most common interface toolkits are either flash-based
or OpenGL-based. The former group includes toolkits such
as MERL’s DTFlash [6], while the latter group contains
MultiTouch Oy’s Cornerstone [17]. There are also various
other interface libraries such as flickOS [9] and Microsoft
Surface SDK [13] using Windows Presentation Foundation
(WPF).

In order to develop multi-touch capable applications,
developers would pick one of these and use various
available widgets to create a custom applications in a multi-
touch supported environment. However, multi-touch
support for traditional desktop applications is rarely seen.

Rotation and Multiple Pointers
Our main requirement for a collaborative tabletop
architecture is to support the ability to allow several users to
rotate application windows concurrently.

Metisse[1] is an X-based window system designed to
facilitate low-fidelity window management prototypes and
provides the ability to rotate application windows.
Similarly, Compiz [3] is an open-source compositing
window manager, which uses OpenGL to quickly draw
windows on a system, as well as complex effects and also
provides the ability for rotation. However, both of these are
aimed at traditional desktop systems and lack the ability to
support multiple pointers.

On the other hand, the Pebble system [16] allow multiple
PDAs to control multiple cursors on the same application
on a PC. However, the application had to be modified in
order to allow for simultaneuos users. A more promising
approach is the Multi-Pointer X Server (MPX) [8]. It is a
modification to the X Server and provides the ability the
use multiple cursor and keyboard foci.

As can be seen, a unified approach to providing tabletop
window management for concurrent users is lacking.

Multi-touch Architectures
Echtler and Klinker [4] proposed a layered architecture in
an attempt to abstract the varied multi-touch hardware used
and allow them to be easily integrated into existing multi-
touch software. However, they only focus on dealing with
custom developed multi-touch aware software and do not
address the issue of integrating with traditional
desktop/mouse-based (legacy) applications.

In Figure 1 (left), we illustrate an architecture that
generalized the structure used in the varied multi-touch
capable systems such as in [2][17]. As can be observed, to
allow multi-user touch input, they rely on custom
developed applications in an environment separate from the
underlying operating system. The use of legacy applications
is often restricted to only one pointer (by means of a single
touch point), and therefore restricted to one user.

THE UNIFIED ARCHITECTURE
Our goal is to allow easy integration of multi-touch
hardware technologies on current Operating Systems,
unifying multiple pointers, multiple touches and natural
touch gestures for interacting with traditional (legacy)
applications in the desktop environment.

An important distinction that must be noted is that we are
not addressing the challenge of making legacy applications
multi-touch capable, but rather we intend to support these
single pointer applications so they can be integrated into a
multi-touch environment, thus allowing multiple users to
use multiple legacy applications simultaneously.

Figure 1 (right) illustrates an overview of our unified
software architecture.

Gesture Recognition
This architecture is designed to support two main types of
input methods: multiple pointers (e.g. computer mice) and
multiple touch input (e.g. finger tip touches on multi-touch
capable hardware).

Multi-touch input can be used in two different ways: (1) as
mouse replacement for the selection of existing user
interface elements such as buttons (often using just the one
finger); and (2) as natural hand gesture, such as rotating or
scaling virtual objects, or for issuing commands using more
than one finger.

In order to distinguish these two input techniques, a gesture
recognizer is used. From the multiple finger touch inputs,
touch points are interpreted so that when only a single
finger is used, it is recognized as a single finger touch
event. For example, if two touch points are detected on the
table, but are very far from each other, they can be
interpreted as two separate single finger touch events.
These are then fed into the input event manager where it is
combined with other single pointer inputs (e.g. computer
mice).

With the remaining multiple touch points, the temporal and
spatial touch positions are interpreted as predefined
gestures and are recognized as individual gesture events
such as rotation or scaling. These are then passed onto the
transformation module, where objects undergo the specified
transformations based on the gesture events received. The
transformed object is then displayed on-screen. These
objects may be in the form of virtual objects in a custom
multi-touch aware application, or legacy application
windows themselves. In the latter case, it is accomplished
by passing the transformation information to the underlying
window decoration that surrounds the application.

Similar to the single finger touch events, the single pointer
inputs are passed onto the input event manager, which is
responsible for keeping track of position data for each
separate pointer.

These pointers can be used in three different ways:

(1) as normal cursors for interacting with individual legacy
applications (one for each application) and their legacy
mouse based window transformation (e.g. dragging and
resizing on borders)

Figure 1. Left: Current architecture separates custom multi-touch aware environment and the underlying desktop.
Right: Unified architecture for simultaneous multi-touch and multi-pointer input onn the desktop environment.

(2) as single pointer/touch events for the multi-touch aware
application

(3) (optionally) to provide additional functionality for
tabletop usage, the architecture allows manipulating
application windows, such as rotation and translation, with
only a single pointer or touch. This is done within the single
pointer manipulator. The process is made intuitive using
on-screen widgets for each window. An implementation of
this will be discussed in the next section.

The main advantage of this architecture is that it does not
assume the legacy application itself knows anything about
multiple pointers, nor touch inputs. All of these are handled
by the layers below, which can then pass on the multi-touch
events to applications that can apply them. In addition,
users can use different input methods simultaneously. For
example, one person can be using one finger as a pointer
while their co-worker can be rotating a separate application
using touch gestures (Figure 2). A third co-worker can be
using a normal computer mouse.

Custom applications can still be run on top of all of this.
With this architecture, it is also possible for using legacy
applications simultaneously with custom multi-touch aware
applications side-by-side.

Figure 2. A user using a single pointer via touch, and another
using a five-finger rotation gesture.

IMPLEMENTATION
In this section, we describe how we achieved our
implementation using this architecture on the Linux Ubuntu
Operating System, illustrated in Figure 3.

Multiple Touches
The hardware used for our multi-touch architecture
prototype was a MultiTouch Cell [17] which is based on the
diffused infrared illumination. The accompanying software
toolkit provides output data about the hands and fingers that
are on the table. It also provides data about the orientation
of fingers and hands.

Our implementation recognizes two simple gesture sets:

• A touch with a single finger from a hand is sent to the
X server as a cursor, which only exists while the touch
continues (Figure 4).

• A touch with multiple fingers from a hand is a gesture
which will translate, rotate and scale the window
underneath it. This gesture continues as long as at
least one finger from that hand remains on the table
(Figure 5).

Figure 3. Our implementation of the unified software
architecture.

Figure 4. Single pointer using one finger.

We implemented the transformation gesture applying the
following parameters to the fingers associated with one
hand:

• The translation was driven by the centroid of the
fingers on the table

• The rotation was driven by the average angle of all the
fingers on the table

• The scale was driven by the average distance between
two fingers on the table

All these parameters were averaged over 10 frames to
smooth the motion and were observed to be quick without
introducing noticeable lag. In addition, throughout a
gesture, the parameters would be changed by comparing the
fingers common to two frames. This ensures that these
parameters remain constant if a user adds or removes
fingers from the gesture without moving any of the fingers
on the table.

Manipulation and Transformation
For achieving transformations of legacy applications
Compiz was used [3]. Compiz is an open-source
compositing window manager, which uses OpenGL to
quickly redraw application windows and provides complex
effects. It has a plugin structure which allows for
developers to add functionality and effects to windows on a
Linux system.

We developed a plugin called transformer, which gives
each window a scale and orientation attribute (both about
the centre of the window). The transformer plugin draws
the windows at their given scale and orientation, and
provides interfaces to other plugins and applications to alter
these attributes.

To implement the multi-touch gesture, we also built a
plugin called multitouch, which receives events through
Dbus (a multicast event bus for interprocess communication
in Linux) about a gesture. Multitouch then alters the
position, rotation and scale attributes so that the rotation
and scaling is about the centre of the window, and updates
the attributes through the transformer plugin.

Figure 5. Rotation using a five-finger gesture.

The transformer plugin then applies a transformation matrix
to the window before Compiz draws it to the screen (Figure
5).

Multiple Pointers
The Multi-Pointer X Server (MPX) [8] is a modification to
the X Server that provides the user with multiple cursors
and keyboard foci. This is in contrast to the mainstream
windowing systems, X11, Quartz and Microsoft Desktop
Window Manager (DWM), which only support a single
cursor and keyboard focus [14].

Our primary interest with this system is the multiple cursor
support, which means individual mouse cursors can move
independently of each other. These cursors can be bound to
hardware mice or controlled programmatically, by a touch
event interpreter or remote control server for instance.

The MPX cursors interact with compatible multi-pointer
aware applications and also with legacy applications to a
limited extent. As mentioned earlier, we do not focus on
bringing multi-pointer support to legacy applications, but
rather allowing multiple pointers to simultaneously interact
with different legacy applications.

In the context of the multi-touch and multi-pointer
architecture, MPX is an important element for permitting
collocated interaction. As can be seen in our
implementation architecture (Figure 3), MPX pointers can
interact with multi-touch and legacy applications, as normal
mice do.

MPX cursors are created for all local hardware mice and
single touches on the multi-touch table. When a new touch
with a single finger is identified, an MPX cursor is created
at that point and a left click is held down. The position of
that cursor then tracks the position of the corresponding
touch. Once the touch is removed, the cursor releases the
click and is destroyed.

The Manipulate Plugin
The ability to manipulate a window through scaling,
rotating and translating is quite intuitive when performing

multi-touch gestures. However, within a unified multi-touch
& multi-pointer architecture there are times when a single
touch transformation is beneficial.

To address this requirement, we implement the
simultaneous rotation and translation algorithm (RnT)
proposed in [12] as a left-click and drag mouse action.
When RnT is active, the action is activated whenever a left-
click begins within a window, in addition to the following
special handles:

• A circular handle is located in the centre of each
window that permits pure translation, as it has been
shown to be intuitive [12].

• Triangular scaling handles are located in the four
corners of each window, similar to [18]. Scaling is
implemented by fixing the centre of the window and
scaling the window to track the mouse or touch
location.

This functionality has been implemented as another
Compiz plugin: Manipulate. Being a plugin for the window
manager allows it to interact with the window decorations,
draw the manipulation handles on the window (Figure 6),
intercept input mouse events in the window and, most
importantly, transform the window.

Figure 6. The Manipulate plugin – triangles for scaling and
circular handle for translating using a single touch.

A window can toggle between ordinary mouse input and
the manipulate mode using a button on the title bar (Figure
7). The custom window decoration featuring this button
was produced using a customized version of the Emerald
Theme Manager.

In our architecture, the Manipulate plugin acts as a bridge
between MPX cursor events and the window transformer
(Manipulate plugin in Figure 3). When the Manipulate

plugin is disabled, cursor events are passed through to the
legacy application as normal.

Figure 7. The Manipulate plugin Toggle.

This single touch manipulation will be useful for mouse
users collaborating with multi-touch users on a shared
surface. Despite only having a single point input, users can
easily transform and position windows in a multi-touch-
enabled environment.

The single touch transformation is also available for multi-
touch users, as they are able to create mouse pointers with
single finger touches, as explained in Section 4.3. This
action is shown in progress in Figure 8. This unifies the
abilities of a multi-touch user and a mouse users.

Figure 8. Rotation and translation in the Manipulate plugin
using one finger.

Limitations
In implementing the unified architecture, we came across a
number of technical challenges that hindered our progress.
These tend to focus on the immaturity of the MPX software
and unreliable MPX support as a result.

At the time of writing, the official integration of MPX and
input redirection into X.Org Server (the reference
implementation of the X Window System) has been delayed
multiple times since its announcement.

The current experimental MPX patches are incompatible
with some graphics drivers and suffer from noticeable

performance issues. In particular, ATI and Nvidia graphics
cards are at the moment unsupported. Therefore we are
forced to rely on Intel graphics, since they have open source
drivers with full MPX support.

Unfortunately, Intel integrated graphics cards have
performance limitations. The unofficial status of MPX and
its considerable implications for changing the way
applications behave also means it has no official support
from Compiz. In its current state, Compiz will only give
developers the location of a single mouse. A barebones
MPX-aware version of Compiz is available but only
provides the most basic functionality and has stability and
performance issues [10]. Adding additional functionality
requires complete rewrites of existing Compiz plugins. An
implication of this is that both the manipulate plugin and
window decorations are not fully multi-pointer aware.
Although we are limited to only one mouse cursor in our
implementation, multiple people are still able to use the
multi-touch gestures to rotate and translate multiple desktop
applications simultaneously.

DISCUSSIONS
So far, we have only discussed a number of technical
challenges involved in implementing the unified
architecture. There remain a number of outstanding issues
yet unaddressed, in regard to using the traditional desktop
in a tabletop collaborative setting:

• Focus: In the single user context, it is appropriate to
have only one application in focus. However, in the
groupware context, it may be necessary to have
multiple applications in focus at once, operated by
different users.

• Hand differentiation: The multi-touch gesture
recognition relies on being able to distinguish between
multiple single finger touches (for mouse cursors) and
multiple touches from a single hand (to move, scale
and rotate objects). However, the system has no way
of knowing that two hands could be from the same
user. Having such knowledge could allow more
complex activities.

• Keyboard/Mouse/Touch set: Similar to the
aforementioned issue, when keyboard or mouse and
touch are used together, it may be difficult to identify
the partnership between these items.

Finally, we present two use case scenarios to demonstrate
the extensibility of our framework.

• Use Case 1: Support for novel input techniques such
as soft touchpad - Apart from mouse and finger
touches as input methods, one can make use of this
architecture and the capability of the touch table to
create a novel touchpad-like input on the tabletop.
This would supplement the current direct touch ability
and allow users to reach positions that are out of arm’s
reach.

• Use Case 2: Integration of the TUIO protocol as an
abstraction to the different input hardware types -
TUIO can be integrated into our unified architecture
between the hardware layer and the input
interpretation layer. This would allow a wider variety
of input devices to be used. At the moment,
customizations are necessary in order for these to fit in
with our architecture, in particular, additional support
for hands identification and gesture types.

CONCLUSION
We have proposed an architecture that unifies different
input methods (multiple mice input, multiple separate
touches and natural hand gestures) with the standard
desktop Operating System for use on tabletop settings. With
this architecture the need for writing custom multi-touch
and multi-pointer aware applications is greatly reduced.

We have presented one working implementation of this
architecture in Ubuntu, using Compiz and MPX
technologies, and discussed our current limitations. The
limitations primarily stem from immature software, which
has been acknowledged by the community and is being
addressed by the developers.

Nevertheless, we have shown that our architecture can
provide multi-touch and multi-pointer support for existing
applications on an existing Operating System.

Given the flexibility of our architecture, existing legacy
applications can be used in a multi-touch aware
environment. In addition, this architecture allows new
natively multi-touch aware applications to be used
simultaneously with legacy software.

We hope that our work will allow the community to
continue further research and development to support
collocated work on the tabletop.

Some interesting areas to investigate include the selection
and implementation of other Operating System level
gestures, which can interact with legacy applications, for
example permitting scrolling through content, or
implementing a physics engine to allow application
windows to be thrown. Additionally, a framework allowing
application specific gestures would add further multi-touch
support for popular legacy applications, perhaps by
mapping the local gestures to keyboard shortcuts or
executable scripts.

REFERENCES
1. O. Chapuis and N. Roussel, “Metisse is not a 3D

desktop!” In Proceedings of UIST'05, the 18th ACM
Symposium on User Interface Software and
Technology, pages 13-22, October 2005. ACM Press.

2. Community Core Vision,
http://nuicode.com/projects/tbeta

3. Compiz, http://www.compiz.org/

4. F. Echtler, and G. Klinker, “A multitouch software
architecture” in Proceedings of the 5th Nordic
Conference on Human-Computer interaction: Building
Bridges (NordiCHI '08), vol. 358, Lund, Sweden, ACM
Press., October 2008, pp. 463-466.

5. Engineering Windows 7
“http://blogs.msdn.com/e7/archive/2009/03/25/touching
-windows-7.aspx”

6. A. Esenther, and K. Ryall, “Fluid DTMouse: Better
Mouse Support for Touch-Based Interactions,” in
Proceedings of the Working Conference on Advanced
Visual Interfaces, ACM Press, Venezia, Italy, May
2006, pp. 112-115

7. J. Han, "Low-Cost Multi-Touch Sensing through
Fustrated Total Internal Reflection," in Proceedings of
UIST '05, Seattle, Washington, ACM Press., 2005, pp.
115-118.

8. P. Hutterer, MPX – The Multi-Pointer X server,
http://wearables.unisa.edu.au/mpx/

9. Ingenieurs Ltd., flickOS,
http://www.ingenieursonline.co.uk/

10. “Input Redirection, MPX and NOMAD”, February
2009. [Online]. Available:
http://smspillaz.wordpress.com/2009/02/21/input-
redirection-mpx-and-nomad/

11. M. Kaltenbrunner, T. Bovermann, R. Bencina and E.
Costanza, “TUIO: A protocol for table-top tangible user
interfaces,” in Proceedings of 6th International
Workshop on Gesture in Human-Computer Interaction
and Simulation (GW 2005), Vannes, 2005.

12. R. Kruger, S. Carpendale, S. Scott and A. Tang, “Fluid
Integration of Rotation and Translation,” in Proceedings
of the ACM Conference on Human Factors in
Computing Systems (CHI 2005), Oregon, 2005, pp. 601-
610.

13. Microsoft, "Microsoft Surface",
http://www.microsoft.com/surface/index.html

14. Microsoft Developer Network, Desktop Window
Manager, http://msdn.microsoft.com/en-
us/library/aa969540(VS.85).aspx

15. A. Morrison, G. Jacucci and P. Peltonen, “CityWall:
Limitations of a Multi-Touch Environment,” in Public
and Private Displays workshop (PPD 08), International
Working Conference on Advanced Visual Interfaces
(AVI 2008), Naples, 2008, pp. 31-35.

16. B. Myers, H. Stiel, and R. Gargiulo, "Collaboration
Using Multiple PDAs Connected to a PC." In
Proceedings CSCW'98: ACM Conference on Computer-
Supported Cooperative Work, November 14-18, 1998,
Seattle, WA. pp. 285-294.

17. Multitouch Oy, “Multitouch Cell”, http://multitouch.fi/
18. C. Shen, F. D. Vernier, and M. Ringel, “DiamondSpin:

an extensible toolkit for around-the-table interaction,” in
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI’04), Vienna,
Austria, April, 2004, pp. 167-174.

19. Sparsh-UI, A Multitouch API for any multitouch
hardware / software system,
http://code.google.com/p/sparsh-ui/

