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Abstract —Within the context of hand gesture recognition, spatiotemporal gesture segmentation is the task of determining, in a video
sequence, where the gesturing hand is located, and when the gesture starts and ends. Existing gesture recognition methods typically
assume either known spatial segmentation or known temporal segmentation, or both. This paper introduces a unified framework for
simultaneously performing spatial segmentation, temporal segmentation and recognition. In the proposed framework, information flows
both bottom-up and top-down. A gesture can be recognized even when the hand location is highly ambiguous and when information
about when the gesture begins and ends is unavailable. Thus, the method can be applied to continuous image streams where gestures
are performed in front of moving, cluttered backgrounds. The proposed method consists of three novel contributions: a spatiotemporal
matching algorithm that can accommodate multiple candidate hand detections in every frame, a classifier-based pruning framework
that enables accurate and early rejection of poor matches to gesture models, and a subgesture reasoning algorithm that learns which
gesture models can falsely match parts of other longer gestures. The performance of the approach is evaluated on two challenging
applications: recognition of hand-signed digits gestured by users wearing short sleeved shirts, in front of a cluttered background,
and retrieval of occurrences of signs of interest in a video database containing continuous, unsegmented signing in American Sign
Language (ASL).

Index Terms —Gesture recognition, gesture spotting, human motion analysis, dynamic time warping, continuous dynamic program-
ming.
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1 INTRODUCTION

A general problem in computer vision is building ro-
bust systems, where higher-level modules can tolerate
inaccuracies and ambiguous results from lower-level
modules. This problem arises naturally in the context
of gesture recognition: existing recognition methods
typically require as input (presumably obtained from
faultless lower-level modules) either the location of the
gesturing hands or the start and end frame of each
gesture. Requiring such input to be available is often
unrealistic, thus making it difficult to deploy gesture
recognition systems in many real-world scenarios. In
natural settings, hand locations can be ambiguous in
the presence of clutter, background motion and presence
of other people or skin-colored objects. Furthermore,
gestures typically appear within a continuous stream
of motion, and automatically detecting where a gesture
starts and ends is a challenging problem (Fig. 1).
To recognize manual gestures in video, an end-to-end
computer vision system must perform both spatial and
temporal gesture segmentation. Spatial gesture segmen-
tation is the problem of determining where the gesture
occurs, i.e., where the gesturing hand(s) are located
in each video frame. Temporal gesture segmentation
is the problem of determining when the gesture starts
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and ends. This paper proposes a unified framework
that accomplishes all three tasks of spatial segmentation,
temporal segmentation, and gesture recognition, by inte-
grating information from lower-level vision modules and
higher-level models of individual gesture classes and the
relations between such classes.
Instead of assuming unambiguous and correct hand
detection at each frame, the proposed algorithm makes
the much milder assumption that a set of several candi-
date hand locations has been identified at each frame.
Temporal segmentation is completely handled by the
algorithm, requiring no additional input from lower-
level modules. In the proposed framework, information
flows both bottom-up and top-down. In the bottom-up
direction, multiple candidate hand locations are detected
and their features are fed into the higher-level video-to-
model matching algorithm. In the top-down direction,
information from the model is used in the matching algo-
rithm to select, among the exponentially many possible
sequences of hand locations, a single optimal sequence.
This sequence specifies the hand location at each frame,
thus completing the low-level task of hand detection.
Within the context of the proposed framework, this
paper makes two additional contributions, by addressing
two important issues that arise by not requiring spa-
tiotemporal segmentation to be given as input:

• Matching feature vectors to gesture models us-
ing dynamic programming requires more compu-
tational time when we allow multiple candidate
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Fig. 1. Illustration of two key problems addressed in this paper. Left: low-level hand detection can often fail to provide
unambiguous results. In this example, skin color and motion were used to identify candidate hand locations. Right: an
example of the need for subgesture reasoning. Digit “5” is similar to a subgesture of the digit “8”. Without modeling this
relation, and by forgoing the assumption that temporal segmentation is known, the system is prone to make mistakes
in such cases, falsely matching the model for “5” with a subgesture of “8”.

hand locations at each frame. To improve efficiency,
we introduce a discriminative method that speeds
up dynamic programming by eliminating a large
number of hypotheses from consideration.

• Not knowing when a gesture starts and ends makes
it necessary to deal with the subgesture problem,
i.e., the fact that some gestures may be very sim-
ilar to subgestures of other gestures (Fig. 1). In
our approach, subgesture relations are automatically
learned from training data, and then those relations
are used for reasoning about how to choose among
competing gesture models that match well with the
current video data.

The proposed framework is demonstrated in two ges-
ture recognition systems. The first is a real-time system
for continuous digit recognition, where gestures are per-
formed by users wearing short sleeves, and (at least in
one of the test sets) one to three people are continuously
moving in the background. The second demonstration
system enables users to find gestures of interest within
a large video sequence or a database of such sequences.
This tool is used to identify occurrences of American
Sign Language (ASL) signs in video of sign language
narratives that have been signed naturally by native ASL
signers.

2 RELATED WORK

The key differentiating feature of the proposed method
from existing work in gesture recognition is that our
method requires neither spatial nor temporal segmenta-
tion to be performed as preprocessing. In many dynamic
gesture recognition systems (e.g., [1]–[7]) lower-level
modules perform spatial and temporal segmentation and
extract shape and motion features. Those features are
passed into the recognition module, which classifies the
gesture (Pavlovic et al. [8]). In such bottom-up methods,

recognition will fail when the results of spatial or tem-
poral segmentation are incorrect.
Despite advances in hand detection [9], [10] and hand
tracking [11]–[15], hand detection remains a challenging
task in many real-life settings. Problems can be caused by
a variety of factors, such as changing illumination, low
quality video and motion blur, low resolution, temporary
occlusion, and background clutter. Commonly-used vi-
sual cues for hand detection such as skin color, edges,
motion, and background subtraction [16], [17] may also
fail to unambiguously locate the hands when the face, or
other “hand-like” objects are moving in the background.
Instead of requiring perfect hand detection, we make
the milder assumption that existing hand detection
methods can produce, for every frame of the input se-
quence, a relatively short list of candidate hand locations,
and that one of those locations corresponds to the gestur-
ing hand. A similar assumption has been made in (Sato
et al. [18]), and also in an earlier version of our work [19].
The key advantages of the method proposed here with
respect to [18], [19] is that the proposed method: 1.) does
not require temporal segmentation as preprocessing and
2.) achieves significant speed-ups by eliminating from
consideration large numbers of implausible hypotheses.
An alternative to detecting hands before recognizing
gestures is to use global image features. For example,
Bobick et al. [20] propose using motion energy images.
Dreuw et al. [21] use a diverse set of global features,
such as thresholded intensity images, difference images,
motion history, and skin color images. Gorelick et al. [22]
use 3D shapes extracted by identifying areas of motion in
each video frame. Nayak et al. [23] propose a histogram
of pairwise distances of edge pixels. A key limitation
of those approaches is that they are not formulated to
tolerate the presence of distractors in the background,
such as humans moving around. In scenes where such
distractors have a large presence, the content of the
global features can be dominated by the distractors.
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In contrast, our method is formulated to tolerate such
distractors, by efficiently identifying, among the expo-
nentially many possible sequences of hand locations, the
sequence that best matches the gesture model.
Ke et al. [24] propose modeling actions as rigid 3D pat-
terns, and extracting action features using 3D extensions
of the well-known 2D rectangle filters [25]. Two key dif-
ferences between our work and that of Ke et al. are that,
1) in [24], actions are treated as 3D rigid patterns, and
2) in [24], distractors present in the 3D hyperrectangle
of the action can severely affect the features extracted
from that action (the method was not demonstrated
in the presence of such distractors). Our method treats
gestures as nonrigid along the time axis (thus naturally
tolerating intra-gesture variations in gesturing speed),
and, as already mentioned, is demonstrated to work well
in the presence of distractors.
Several methods have been proposed in the litera-
ture for gesture spotting i.e., for recognizing gestures in
continuous streams in the absence of known temporal
segmentation [26]–[31]. One key limitation of all those
methods is that they assume that the gesturing hand(s)
have been unambiguously localized in each video frame.
Taking a closer look at existing gesture spotting meth-
ods, such methods can be grouped into two general
approaches: the direct approach, where temporal seg-
mentation precedes recognition of the gesture class, and
the indirect approach, where temporal segmentation is
intertwined with recognition. Methods that belong to the
direct approach first compute low-level motion parame-
ters such as velocity, acceleration, and trajectory curva-
ture (Kang et al. [32]) or mid-level motion parameters
such as human body activity (Kahol et al. [33]), and
then look for abrupt changes (e.g., zero-crossings) in
those parameters to identify candidate gesture bound-
aries. A major limitation of such methods is that they
require each gesture to be preceded and followed by
non-gesturing intervals – a requirement not satisfied in
continuous gesturing.
Indirect methods for temporal gesture segmentation
detect gesture boundaries by finding, in the input se-
quence, intervals that give good recognition scores when
matched with one of the gesture classes. Most indirect
methods [26], [27], [29] are based on extensions of Dy-
namic Programming (DP) based methods for isolated
gestures, e.g., Dynamic Time Warping (DTW) [34], [35],
Continuous Dynamic Programming (CDP) (Oka [29]),
various forms of Hidden Markov Models (HMMs) [6],
[13], [16], [27], [36]–[38], and most recently, Conditional
Random Fields [39], [40]. In those methods, the gesture
endpoint is detected by comparing the recognition likeli-
hood score to a threshold. The threshold can be fixed or
adaptively computed by a non-gesture garbage model
[27], [41], equivalent to silence models in speech. Our
method is also an indirect method; however, unlike these
related approaches, our method does not require the
hand to be unambiguously localized at each frame of
the video sequence.

To reduce the time complexity of DP search, several
pruning methods have been proposed in the speech
recognition community (Jelinek [42]). Beam-search is
perhaps the most commonly-known approach, and it
has been successfully adapted for sign language gesture
recognition (Wang et al. [43]). While this approach can
dramatically reduce the search time, it requires ad hoc
setting of beam-search parameters. In [26], we proposed
that pruning can be posed as a binary classification
problem, where the classifiers are trained automatically
from training data. The resulting classifiers are used to
quickly rule out unlikely search paths in the DP table.
In this paper we illustrate that the approach of [26] can
potentially have poor generalization properties, leading
to over-pruning when applied to sequences that were not
used for training. We propose new classifier training and
pruning algorithms that offer improved generalization
properties compared to [26].
Matching the input with all gesture models (a lin-
ear scan) may still be too slow for gesture recognition
systems with gesture vocabularies on the order of a
few thousands (Wang et al. [43]). To reduce the search
time complexity, some systems [43]–[46] break gestures
into motion subunits or movemes that are analogous
to the phonemes used in speech recognition systems.
Compared to the large number of gestures, the number
of subunits is relatively small, usually on the order of a
few tens. As a result, the search is over a smaller space
of movemes, and many gesture models can be pruned
from the search early if their prefixes (first few movemes)
match the input very poorly. In our experiments with
natural sign language communication by native signers,
we found that many sign durations tend to be only 10-
20 frames at a sampling rate of 30Hz; this number of
frames per moveme is insufficient to learn and represent
meaningful statistics.
After a set of candidate gestures has been detected,
a set of rules is applied to select the best candidate,
and to identify the input subsequence with the gesture
class of that candidate. Different sets of rules have been
proposed: peak finding rules (Morguet and Lang [28]),
spotting rules (Yoon et al. [30]), and the user interaction
model (Zhu et al. [31]). A problem that occurs in practice,
but is often overlooked, is the subgesture problem: false de-
tection of gestures that are similar to parts of other longer
gestures. To address this, Lee and Kim [27] proposed
two strategies. The first introduces a maximum length
for non-gesture patterns that is greater than the length
of the longest gesture. The second employs heuristics to
infer the user’s completion intentions, such as moving
the hand out of camera range or freezing the hand for
a while. The first approach requires an ad hoc parameter
setting, and the second limits the naturalness of inter-
action. To lift these limitations, we propose a gesture
recognition algorithm that explicitly models subgesture
relations between gestures, and a learning algorithm that
automatically identifies the subgesture relations from
training data.
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Preliminary versions of this work have appeared in
[19] and [26]. With respect to those versions, the work
in this paper includes significant improvements:

• Here we assume neither known temporal segmen-
tation (assumed in [19]) nor accurate hand detection
(assumed in [26]).

• We recognize gestures using models that are trained
with Baum-Welch, as opposed to using exemplars.

• We describe an algorithm for learning subgesture
relations, as opposed to hardcoding such relations
in [26].

• We improve the pruning method of [26]. The new
method is theoretically shown to be significantly less
prone to eliminate correct hypotheses.

• We include a much wider array of experiments, in-
cluding experiments with challenging backgrounds
(including two or three moving people acting as
distractors), and experiments on a new computer
vision application, i.e., ASL sign retrieval in a video
database of native ASL signing.

3 PROBLEM DEFINITION AND OVERVIEW

Throughout the paper, we use double-struck symbols for
sequences and models (e.g.,M, Q, V, W), and calligraphic
symbols for sets (e.g., A,S, T ).
Let M1, . . . , MG be models for G gesture classes. Each
model Mg = (Mg

0 , . . . , Mg
m) is a sequence of states.

Intuitively, stateMg
i describes the i-th temporal segment

of the gesture modeled by Mg . Let V = (V1, V2, . . .) be a
sequence of video frames showing a human subject. We
denote with Vsn the frame sequence (Vs, . . . , Vn). The hu-
man subject occasionally (but not necessarily all the time)
performs gestures that the system should recognize. Our
goal is to design a method that recognizes gestures as
they happen. More formally, when the system observes
frame Vn, the system needs to decide whether a gesture
has just been performed, and, if so, then recognize the
gesture. We use the term “gesture spotting” for the
task of recognizing gestures in the absence of known
temporal segmentation.
Our method assumes neither that we know the lo-
cation of the gesturing hands in each frame, nor that
we know the start and end frame for every gesture.
With respect to hand location, we make a much milder
assumption: that a hand detection module has extracted
from each frame Vj a set Qj of K candidate hand
locations. We use notation Qjk for the feature vector
extracted from the k-th candidate hand location of frame
Vj .
The overall algorithm is depicted in Fig. 2. The online
gesture recognition algorithm consists of three major
components: hand detection and feature extraction, spa-
tiotemporal matching, and inter-model competition. The
offline learning phase, marked by the dashed arrows
in Fig. 2, consists of learning the gesture models, the
pruning classifiers, and the subgesture relations between
gestures.

Sec. 4 describes the hand detection and feature ex-
traction modules used in our experiments. Multiple
candidate hand regions are detected using simple skin
color and motion cues. Each candidate hand region is
a rectangular image subwindow, and the feature vector
extracted from that subwindow is a 4D vector containing
the centroid location and optical flow of the subwindow.
We should note that the focus of this paper is not on
hand detection and feature extraction; other detection
methods and features can easily be substituted for the
ones used here.

Gesture models are learned by applying the Baum-
Welch algorithm to training examples (Sec. 5.1). Given
such a model Mg and a video sequence V1n, spa-
tiotemporal matching consists of finding, for each n′ ∈
{1, . . . , n}, the optimal alignment between Mg and V1n′ ,
under the constraint that the last state of Mg is matched
with frame n′ (i.e., under the hypothesis that n′ is the
last frame of an occurrence of the gesture). The optimal
alignment is a sequence of triplets (it, jt, kt) specifying
that model state Mg

it
is matched with feature vector

Qjtkt
. As we will see, this optimal alignment is computed

using dynamic programming. Observing a new frame Vn

does not affect any of the previously computed optimal
alignments betweenMg and V1n′ , for n′ < n. At the same
time, computing the optimal alignment between Mg and
V1n reuses a lot of the computations that were performed
for previous optimal alignments. The spatiotemporal
matching module is described in Sec. 5.2.

Allowing for multiple candidate hand locations in-
creases the computational time of the dynamic program-
ming algorithm. To address that, in Sec. 6 we describe a
pruning method that can significantly speed up model
matching, by rejecting a large number of hypotheses
using quick-to-evaluate local criteria. Deciding whether
to reject a hypothesis or not is a binary classification
problem, and pruning classifiers are learned from training
data for making such decisions. These pruning classifiers
are applicable at every cell of the dynamic programming
table, and have the effect of significantly decreasing
the number of cells that need to be considered during
dynamic programming.

The inter-model competition (Sec. 7) consists of de-
ciding, at the current frame Vn, whether a gesture has
just been performed, and if so, determining the class of
the gesture. By “just been performed” we mean that the
gesture has either ended at frame Vn or it has ended at
a recent frame Vn′ . This is the stage where we resolve
issues such as two or more models giving low matching
costs at the same time, and whether what we have
observed is a complete gesture or simply a subgesture
of another gesture – for example, whether the user has
just performed the gesture for “5” or the user is in the
process of performing the gesture for “8”, as illustrated
in Fig. 1. Subgesture relations are learned using training
data.
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Fig. 2. System flowchart. Dashed lines indicate flow during offline learning. Solid lines indicate flow during online
recognition.

4 HAND DETECTION AND FEATURE EXTRAC-

TION

The spatiotemporal matching algorithm is designed to
accommodate multiple hypotheses for the hand location
in each frame. Therefore, we can afford to use a rela-
tively simple and efficient preprocessing step for hand
detection, that combines skin color and motion cues.
The skin detector first computes for every image pixel
a skin likelihood term. For the first frames of the se-
quence, where a face has still not been detected, we
use a generic skin color histogram (Jones and Rehg [47])
to compute the skin likelihood image. Once a face has
been detected (using the detector of Rowley et al. [48]),
we use the mean and covariance of the face skin pixels
in normalized rg space to compute the skin likelihood
image.
The motion detector computes a motion mask by
thresholding the result of frame differencing. The motion
mask is applied to the skin likelihood image to obtain
the hand likelihood image. Using the integral image
(Viola and Jones [25]) of the hand likelihood image,
we efficiently compute for every subwindow of some
predetermined size the sum of pixel likelihoods in that
subwindow. Then we extract the K subwindows with
the highest sum, such that none of the K subwindows
may include the center of another of the K subwindows.
Each of the K subwindows is constrained to be of size
40 rows x 30 columns. Alternatively, for scale invariance,
the subwindow size can be defined according to the size
of the detected face.
This way, for every frame j of the query sequence, K
candidate hand regions are found. For every candidate
k in frame j a feature vector Qjk is extracted. In our
experiments, Qjk = (xjk, yjk, ujk, vjk), where the 2D
position (x, y) is the pixel location of the region centroid,
and the 2D velocity (u, v) is the optical flow averaged
over that region. Optical flow is computed via block-
based matching (Yuan et al. [49]).
We should emphasize that we do not use connected
component analysis at all in the process of identifying

candidate hand regions. The candidate hand regions are
simply the 40x30 rectangles identified as described in
the previous paragraph. This is in contrast with most
existing methods (e.g., Chen et al. [16]), which find
the single largest component, and associate it with the
gesturing hand. A connected component algorithm may
group the hand with the arm if the user is wearing
a shirt with short sleeves, or with the face, or with
any other hand-like objects with which the hand may
overlap. In contrast, our hand detection algorithm main-
tains multiple subwindows for every frame of the video
sequence, and some of these subwindows may occupy
different parts of the same connected component. The
gesturing hand is typically covered by one or more of
these subwindows (see Figure 1).

5 SPATIOTEMPORAL MATCHING

In this section we describe our spatiotemporal matching
algorithm, which can be applied in settings where nei-
ther spatial nor temporal segmentation of the input are
available. We first describe how to learn gesture models,
and then we describe how to match such models with
features extracted from a video sequence.

5.1 Model Learning

In spatiotemporal matching we match feature vectors,
such as the 4D position-flow vectors obtained as de-
scribed in Sec. 4, to model states, according to observa-
tion density functions that have been learned for those
states. Our first step is to learn those density functions,
for each gesture class, using training examples for which
spatiotemporal segmentation is known. Colored gloves
are used – only in the training examples, not in the
test sequences – to facilitate automatic labeling of hand
locations.
Learning the observation density functions is done
using a variant of the Baum-Welch algorithm [50], [51].
We manually specify the number of states for each model
(as typically done with the Baum-Welch algorithm), and
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we also specify that transition probabilities between non-
consecutive states are 0 and between consecutive states
are uniform. In other words, at every transition the
model is equally likely to remain at the same state or to
move to the next state. We fix the transition probabilities
to simplify the learning task, because we do not have
sufficient training data to learn more parameters.
We note that the way we set transition probabilities,
we do not allow model states to be skipped. This is
simply an implementation decision. We make the as-
sumption that the number of model states is significantly
smaller than the number of frames in an occurrence
of the gesture, so that skipping states is not needed.
At the same time, the proposed framework can easily
accomodate transition probabilities that allow for states
to be skipped.
Given the above constraints we apply the standard EM
procedure that is the core of the Baum-Welch algorithm.
Naturally, if more training data are available, transition
probabilities can also be learned, or alternative richer
models can be constructed such as segmental Markov
models (Ostendorf et al. [52]) or Conditional Random
Fields (Lafferty et al. [39]).

5.2 Matching Video with a Model

Let V = (V1, V2, . . .) be a sequence of video frames.
We also call V a query sequence or simply a query.
From each Vj we extract a set Qj of K feature vectors:
Qj = {Qj1, . . . , QjK}. Each feature vector is extracted
from an image region which corresponds to a particular
candidate hand location. Let Mg = (Mg

0 , . . . , Mg
m) be a

gesture model ofm+1 states. Each stateMg
i is associated

with a Gaussian observation density (µg
i , Σ

g
i ) that assigns

a likelihood to each observation vector Qjk, with µg
i

and Σg
i being respectively the mean and the covariance

matrix of the feature vectors observed in state Mg
i . As

a reminder, in our implementation, each Qj,k is simply
a 4D vector containing the centroid location and the
optical flow for a subwindow corresponding to the k-
th candidate hand region of frame j. We define the
local cost d(i, j, k) ≡ d(Mg

i , Qjk), between model state
Mg

i and feature vector Qjk , as the Mahalanobis distance
d(i, j, k) = (Qjk − µg

i )
′(Σg)−1(Qjk − µg

i ). A special case
is state Mg

0 , which we treat as a “dummy” state that
matches all feature vectors: d(0, j, k) = 0.
A warping path W defines an alignment between
modelMg and a subsequence (Q1, . . . ,Qn) ending at the
current frame n. Formally, W = w1, . . . , wT , where each
wt = (it, jt, kt) is a triple specifying that model state
Mg

it
is matched with feature vector Qjtkt

. We say that wt

has two temporal dimensions (denoted by i and j) and
one spatial dimension (denoted by k). A warping path
W must satisfy the following constraints (Keogh [53]):

• Boundary conditions: w1 = (0, 1, k) and wT =
(m, n, k′). This requires the warping path to start by
matching the dummy state Mg

0 of the model with
the first frame V1 of the query, and end by matching

the last state of the model with the last frame of
the query. We require that the warping path ends at
frame n, because we want to evaluate the hypothesis
that current frame n is the last frame of the gesture
(naturally, we have to evaluate this hypothesis every
time we obtain a new current frame). No restrictions
are placed on k and k′.

• Temporal continuity: Given wt = (a, b, c), the pre-
ceding triple wt−1 = (a′, b′, c′) must satisfy that
a − a′ ≤ 1 and b − b′ ≤ 1. This restricts each step in
the warping path to make smooth transitions (with
respect to the previous step) along the two temporal
dimensions.

• Temporal monotonicity: Given wt = (a, b, c), the pre-
ceding triple wt−1 = (a′, b′, c′) must satisfy that
a − a′ ≥ 0 and b − b′ ≥ 0. This forces the warping
path sequence to increase monotonically in the two
temporal dimensions.

The matching cost D(W) of warping path W =
(i1, j1, k1), . . . , (iT , jT , kT ) is defined as

D(W) =
T

∑

t=1

d(it, jt, kt) , (1)

where d(it, jt, kt) is, as before, shorthand for the
Mahalanobis distance between Mg

it
and Qjt,kt

. The
optimal warping path W∗ is simply the warping
path W that minimizes D(W). The optimal path
W∗ = (i∗1, j

∗
1 , k∗

1), . . . , (i∗T , j∗T , k∗
T ) provides three impor-

tant pieces of information:

• D(W∗) is a measure of how well the input sequence
matches the model, and can be used to determine
if the gesture modeled by Mg actually occurs in the
input video V. If we have multiple gesture classes,
the matching costs between the input sequence and
each class model can be compared to decide which
model provides the best match.

• W∗ specifies, for each input frame, the candidate
hand location that optimizes the matching between
the input sequence and the model. In other words,
W∗ specifies the optimal spatial segmentation of the
gesture, under the hypothesis that the gesture has
just been performed by the user.

• W∗ also specifies the optimal temporal segmentation
of the gesture (again, under the hypothesis that the
gesture has just been performed by the user). The
starting frame of the gesture is the first j∗t such
that i∗t = 1, i.e., the first input frame that is not
matched to the dummy state Mg

0 . The end frame
of the gesture j∗T is constrained to equal n, i.e., the
current frame.

Dynamic Programming (DP) can be used to find the
minimum warping path cost efficiently. In particular, let
wt = (i, j, k) be any possible warping path element.
We define the cumulative cost D(wt) to be the cost
of the optimal warping path matching the first i + 1
model states (Mg

0 , . . . , Mg
i ) to the first j video frames

(V1, . . . , Vj), and matching state Mg
i with feature vector
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Qjk. The key property that allows us to use DP is that
D(wt) can be defined recursively:

D(wt) = min
w∈A(wt)

{D(w)} + d(wt), (2)

where A(wt) is the set of all possible predecessors wt−1

that satisfy the warping path constraints, in particular
continuity and monotonicity:

A(wt) ≡ A(i, j, k)

= ({(i, j − 1), (i − 1, j − 1)} × (3)

{1, . . . , K}) ∪ {(i − 1, j, k)}.

Note that jt can be smaller (but not greater) than t,
since we allow the same feature vector Qitjt

to match
consecutive model states (in which case t increases but
jt does not increase).
Using the above recursion, DP is implemented using
a 3D table, indexed by (i, j, k). When the system reads
a new video frame Vn, the DP algorithm computes the
2D slice of the table that corresponds to frame n, storing
at cell (i, n, k) two things: 1.) the value for D(i, n, k), for
i = 0, . . . , m and k = 1, . . . , K , and 2.) the predecessor
among A(i, n, k) that minimized Eq. 2. After we have
computed all values D(i, n, k), the minimum cost among
all D(m, n, k) (i.e., all costs corresponding to a match
between the last state of the model and the current
frame n) corresponds to the optimal alignment between
the model and the video sequence. Using backtracking,
i.e., following predecessor links, we obtain the optimal
warping path.

6 PRUNING

A straightforward implementation of the matching al-
gorithm described above may be too slow for real-time
applications, especially with larger vocabularies. The
time complexity is linear to the number of models, the
number of states per model, the number of video frames,
and the number of candidate hand locations per frame.
We therefore propose a pruning method that eliminates
unlikely hypotheses from the DP search, and thereby
makes spatiotemporal matching more efficient. In the
theoretically best case, the proposed pruning method
leads to time complexity that is independent of the
number of model states (vs. complexity linear to the
number of states for the algorithm without pruning).
The key novelty in our pruning method is that we view
pruning as a binary classification problem, where the
output of a classifier determines whether to prune a
particular search hypothesis or not.

6.1 Pruning Classifiers

The matching algorithm computes, for each cell (i, j, k)
in the DP table, the optimal warping path ending at
(i, j, k). The key idea in our pruning method is that there
are cases where the matching is so poor that we can

safely prune out cell (i, j, k), and reject all warping paths
going through it.
The decision to prune a cell can be made by a pruning
classifier C, which can be learned from training data.
Different types of classifiers can be used including: subse-
quence classifiers, which prune based on the compatibility
between an input prefix and a model prefix; single obser-
vation classifiers, which prune based on the compatibility
between a single feature vector and a single model
state; and transition classifiers, which prune based on
the compatibility between successive observations. The
pruning classifier we have used in our experiments is
an observation classifier that checks whether the local
matching cost d(i, j, k) exceeds a threshold τ(i) associ-
ated with state Mg

i :

Ci(Qjk) =

{

1 if d(i, j, k) ≤ τ(i)
0 otherwise

, (4)

where d(i, j, k) is the local matching cost between the
observation Qjk and model state Mg

i .

6.2 Learning Pruning Classifiers

In learning the pruning classifiers, the objective is to
maximize efficiency and at the same time to minimize
loss in accuracy. Intuitively, we want to prune out as
many hypotheses as possible, while not pruning out the
true optimal alignment between the gesture model and
examples from the same gesture class.
In the first method we devised (described in [26]), a
threshold τ(i) is learned for each classifier Ci, as follows:
the gesture model aligned via dynamic programming
with all the training examples from the same class. The
threshold τ(i) is set to the maximum distance among the
distances between model stateMg

i and all feature vectors
Qjk that are matched with Mg

i . However, the thresholds
thus learned may overfit the training data, and the
pruning classifiers may reject a significant fraction of
correct warping paths in the test data.
To illustrate the worst case, let g be a gesture class,
let Mg be the gesture model, and suppose we have
N training examples and N test examples for g. As-
sume that training and test examples are independent
identically-distributed (iid), and that, in any sequence,
any pair of observations is conditionally independent,
given the model states that those observations cor-
respond to. Let Ss be a test example, and Ws =
(i1, j1, k1), . . . , (iT , jT , kT ) be the correct warping path
between Ss and the modelM

g . The correct warping path
will be pruned out if, for at least one triple (i, j, k), it
holds that d(i, j, k) > τ(i).
Let τ ′(i) be the value we would have computed for

τ(i) if we had used the N test images as our training
set. Since both the training and the test examples are
iid, there is a 0.5 probability that τ ′(i) > τ(i), in which
case for at least one test example (the one from which
τ ′(i) was computed), the correct warping path will be
pruned out, because it will match a feature vector Qjk
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to state Mg
i so that d(i, j, k) = τ ′(i) > τ(i). Therefore,

the probability that a random sequence Ss ∈ S would be
rejected because of τ(i) is at least 1

2N
.

At a more intuitive level, we can consider the distances
between state Mg

i and all feature vectors (from both the
training and the test sequences of gesture g) matched
with that state under dynamic programming. If we have
an equal number N of both training and test examples,
there is a 0.5 probability that the largest such distance
occurs in a test example, and then τi will cause the
correct warping path for that example to be pruned. This
gives a probability of at least 1

2N
for any correct warping

path to be pruned due to a bad match with state Mg
i .

Since we learn one threshold τ(i) for each state Mg
i ,

we learn a total of m such thresholds (where m is the
number of states in model Mg

i ), and the probability
that a random test example Ss will be pruned by any
τ(i) is at least 1 − (1 − 1

2N
)m. This pruning probability

can be substantial for small N and large m. To reduce
overfitting and the chance of pruning the optimal path,
leave-one-out cross validation is used to learn a single
parameter ǫ, which we call the expansion factor and
we add to every τ(i). The value for ǫ is chosen to be
the minimum value such that, if every threshold τ(i)
is incremented by ǫ, no optimal path is pruned out
during cross-validation. Adding ǫ to each τ(i) reduces
the pruning probability from 1 − (2N−1

2N
)m to 1

N
. In our

digit recognition application experiments, where N = 30
andm = 10, the probability that the correct warping path
for a random test sequence will be pruned out is reduced
to 0.033 compared to 0.154 without the expansion factor.

6.3 Spatiotemporal Matching with Pruning

Pruning classifiers can be incorporated in the spatiotem-
poral matching algorithm in order to speed it up. We call
the resulting algorithm Continuous Dynamic Program-
ming with Pruning (CDPP). In this algorithm, pruning
classifiers are applied to each (i, j, k) cell in the dynamic
programming table. Implementing dynamic program-
ming appropriately, so as to achieve these computational
savings, involves certain subtleties. Due to space limita-
tions we do not fully describe the dynamic programming
implementation in this paper, but we provide full details
on that subject in [54].
The CDPP algorithm is invoked separately for every
gesture modelMg , every time the system observes a new
video frame. After the matching costs for all models have
been computed, the inter-model competition algorithm
is invoked to determine if a gesture has just been per-
formed, as will be described in the next section.

7 SUBGESTURES RELATIONS AND INTER-

MODEL COMPETITION

The inter-model competition stage of our method needs
to decide, when multiple models match well with the

input video, which of those models (if any) indeed
corresponds to a gesture performed by the user. This
stage requires knowledge about the subgesture relation-
ship between gestures. A gesture g1 is a subgesture of
another gesture g2 if g1 is similar to a part of g2 under
the similarity model of the matching algorithm. For
example, as seen in Fig. 1, in the digit recognition task
the digit “5” can be considered a subgesture of the digit
“8”. In this section we describe how to learn subgesture
relations from training data, and how to design an inter-
model competition algorithm that utilizes knowledge
about subgestures.

7.1 Learning Subgesture Relations

The inter-model competition algorithm requires knowl-
edge about the subgesture relationship between gestures.
Subgesture relations can be manually specified using
domain knowledge. However, when subgesture relations
are less obvious and when the number of gesture models
is large, an automated learning method is called for.
Subgesture relations are learned automatically as fol-
lows: given a particular gesture model Mg1 and a train-
ing example Vg2 from a different gesture g2 we run
CDPP on this model-exemplar pair. If there exists a
warping path W = ((1, js), . . . , (m, je)) for some 1 ≤
js ≤ je ≤ n that was not pruned by the algorithm,
then Mg1 matches a subsequence V

g2

js:je
, and therefore

g1 is a subgesture of g2. We repeat this process for all
the remaining training examples of gesture g2, and the
number of times that Mg1 matches a subsequence of
an exemplar for gesture g2 can serve as a confidence
measure of g1 being a subgesture of g2. Table 1 shows
an example set of learned subgesture relations, and Table
2 shows the corresponding confidence scores, i.e., the
number of times for each gesture pair g1, g2 that Mg1

matches a subsequence of an exemplar for gesture g2.
In [54] we provide a description of the subgesture
learning algorithm in pseudocode.

7.2 Inter-Model Competition

The inter-model competition algorithm consists of two
steps. The first step updates the current list of candidate
gesture models. The second step uses a set of rules
to decide if a gesture was performed, i.e., if one of
the candidate models truly corresponds to a gesture
performed by the user. In order to describe the algorithm
we first need the following definitions:

• Partial path: a warping path that matches an in-
put subsequence Vs:n with the first i model states
Mg

1 , . . . , Mg
i , so that frames s and n are matched

respectively to states 1 and i.
• Complete path: a warping path matching an input
subsequence Vs:n with the complete model Mg , so
that frame n is matched to the last state of the model.

• Active path: any partial (or complete) path that has
not been pruned by CDPP. In other words, any path
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stored in an unpruned DP cell that corresponds to
the current frame n.

• Active model: a modelMg that has an active path. An
active model Mg represents a hypothesis that, at the
current frame n, we are observing a (possibly still
incomplete) occurrence of gesture g.

• Firing model: a model Mg that has a complete path
for which the path cost is below some detection
acceptance threshold chosen for that model. A fir-
ing model Mg represents a hypothesis that, at the
current frame n, we have observed the completion
of an occurrence of gesture g.

The inter-model competition algorithm is invoked
once for each input frame n. One input to this algorithm
is a table of subgesture relations. This table is automati-
cally constructed from training data, offline, as described
in Sec. 7.1. Another input is a current list of candidate
gestures. Before the first video frame is observed, this
list of candidate models is initialized to be empty. The
third input to the algorithm is the state of all DP tables
at the current frame.

At an intuitive level, after all the matching costs
have been updated for the current frame n, the best
firing model (if such a model exists) defines a gesture
hypothesis h′ that is considered for inclusion in the list
of candidate gestures. For every new candidate h′ we
record its class gh′ , the frame at which it has been de-
tected (which we call the “end frame” for that gesture),
the corresponding start frame, and the optimal matching
cost (normalized, by dividing the original cost by the
path length). Decisions on candidates are not made
immediately; a candidate gesture may be considered for
several frames, before it is finally accepted or rejected.
At every frame, existing candidates are considered for
removal from the list. Finally, the system may decide,
according to a set of rules, that one of the candidate
gestures has indeed been performed.

The inter-model competition algorithm is described
below. We describe two versions of the algorithm, that
differ on whether they use the table of subgesture rela-
tions or not. We use the acronym CDPP (Continuous Dy-
namic Programming with Pruning) for the version that
does not use the table, and we use the acronym CDPPS
(CDPP with Subgesture Reasoning) for the version that
takes subgesture relations into account.

1) Find the best firing model Mg′

, i.e., the model
with the lowest cost for the current frame, and
define the corresponding candidate gesture h′. The
significance of this step is that, if multiple models
are firing at the current frame n, we only generate a
candidate gesture h′ for the model with the lowest
matching cost; we ignore the rest of the firing
models.

2) For all candidates hi 6= h′ (recall that a candidate
may be considered for several frames before getting
accepted or rejected) perform the following tests:

a) CDPPS only: if g′ (the gesture class associated

with candidate h′) is a supergesture of ghi
then

delete hi. This rule enforces that a gesture class
ghi
(e.g., the digit “5”) cannot be recognized

when a supergesture of ghi
(e.g., the digit “8”)

is also a candidate.
b) CDPPS only: if g′ is a subgesture of ghi

then
delete h′. The reasoning here is the same as in
the previous step.

c) If the start frame of h′ occurred before the
end frame of hi, then delete the worst scoring
among h′ and hi. This rule enforces that no
two candidates overlap with each other. If
the current candidate h′ is overlapping with a
previous candidate hi, only the one with the
lowest matching cost among the two survives.

After the list of candidates has been updated, if the list
of candidates is nonempty then a candidate hi may be
“spotted”, i.e., accepted as a true occurrence of gesture
ghi
, if all current active paths started after the end frame

of hi. In other words, hi is accepted if and only if all
hypotheses overlapping with hi have been rejected (and
hi has still not been rejected).

Once a gesture has been recognized, the list of candi-
dates is reset to empty, all DP tables are cleared, and the
entire process (spatiotemporal matching and inter-model
competition) starts again, from the first video frame after
the end frame of the recognized gesture.

8 EXTENSIONS

8.1 Translation and Scale Invariance

To gain invariance to translation and scale we can nor-
malize the features with respect to the location and scale
of a face detection window. Since recent face detection
algorithms (e.g., Viola and Jones [25]) have reached
a relatively high level of accuracy and efficiency, the
location and size of a face detection window can serve
as a good estimate of the location and scale of a gesture,
assuming the gesture is performed at the same location
and scale with respect to the face.

8.2 Matching Two-Handed Gestures

For ease of explanation the spatiotemporal matching
algorithm was described for one-handed gestures. One
way to model two-handed gestures is to have two sep-
arate models, one per hand, where the models can be
either coupled (Brand et al. [36]) or parallel (Vogler and
Metaxas [37]). An alternative is to concatenate the two
hand observation vectors while maintaining a consistent
order, namely, first the left hand’s feature followed by
the right (Starner et al. [6]).

In our work the hands’ identities are not known in the
first frame, and multiple (K ≥ 2) hand hypotheses are
maintained throughout the input sequence. To address
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the multiple hypothesis problem, we maintain K2 (con-
catenated) feature vectors reflecting all ordered combina-
tions of left/right hand hypotheses, Qjk ≡ (Ql

j,k1
, Qr

j,k2
),

where 1 ≤ k ≤ K2, and 1 ≤ k1, k2 ≤ K . The CDPP
algorithm will then find the optimal sequence of two-
hand hypotheses.

9 COMPLEXITY

The time complexity of the spatiotemporal matching
algorithm is O(Kmn), where K is the number of can-
didate hand locations at every input frame, and m and
n are the number of model states and number of video
frames respectively. The complexity of matching two-
handed gestures is O(K2mn). During matching, only
the matrices corresponding to the current and previous
frame are needed to be stored in memory, and therefore
the space complexity is a factor of n less than the
corresponding time complexity. Alternatively, a circular
buffer of fixed size can be kept for every model to allow
the system to trace back the optimal path.

10 EXPERIMENTS

We evaluate the proposed gesture recognition frame-
work in two settings: a gesture recognition setting, where
users perform gestures corresponding to the 10 digits
(Figs. 3 and 4), and an ASL sign retrieval setting. In
our experiments the users and signers can wear short
sleeved shirts, the background may be arbitrary (e.g.,
an office environment in the digit gesture dataset) and
even contain other moving objects, and hand-over-face
occlusions are allowed.
The proposed system is quantitatively evaluated in
terms of accuracy and computation time. The compu-
tation time is measured both as the average processing
time per frame, and the average number of operations
per frame, where the number of operations is simply the
number of Dynamic Programming cells visited by the
matching algorithm. All experiments were conducted on
a 2GHz Opteron-based Windows PC with 2GB of RAM.

10.1 Continuous Digit Recognition

This experiment is intended to evaluate the performance
of the entire gesture recognition system that combines
spatial and temporal segmentation. Users are asked to
make gestures chosen from the 10 Palm Graffiti Digits,
as shown in Figs. 3 and 4. The video clips for the digits
dataset were captured with a Unibrain Firewire camera
at 30Hz using an image size of 240 × 320. Each digit
gesture video clip depicts a user gesturing the ten digits
in sequence (although the system does not know that the
digits are performed in sequence), and the goal of the
system is to recognize the digits as they are gestured.
We should note that the order in which digits appear
in a sequence does not make any difference in system ac-
curacy. The gesture models are trained using segmented

examples, so no information about the preceding digit
is available. Also, the hand returns to the rest position
after performing each digit, so there is no coarticulatory
effect between gestures.
The training set used for learning the digit models
consisted of 30 video sequences, 3 sequences from each
of 10 users. In each sequence, the user signed once each
of the 10 digits, for a total of 30 training examples per
digit class. Users wore colored gloves in the training
sequences. The 30 training sequences were used in the
offline learning stage, to learn models, pruning classi-
fiers, and subgesture relations.
We used two test sets for evaluating performance on
digit recognition: an “easy” set and a “hard” set. In
each test sequence, the user signed once each of the
10 digits, and wore short sleeves (and, naturally, no
colored gloves). For both test sets, experiments were
performed in a user-independent fashion, where the
system recognizes test gestures of a particular user using
digit models which were learned from training examples
collected from other users.
The easy test set contains 30 short sleeve sequences,
three from each of 10 users. The hard test set contains
14 short sleeve sequences, two from each of seven users.
The sequences in the hard test set contain distractors, in
the form of one to three humans (besides the gesturing
user) moving back and forth in the background (Fig. 5).
The presence of such distractors makes these sequences
quite challenging for methods assuming reliable hand
tracking and methods relying on global features. In the
easy test set there are no distractors.
Given a test frame, K candidate hand regions of size

40×30 were detected and corresponding feature vectors
were extracted as described in Sec. 4. Single observation
classifiers (Sec. 6.1 Eq. 4) were used for pruning and
expansion factors were learned as described in Sec. 6.2.
The resulting matching costs were fed into the inter-
model competition algorithm, which decided whether or
not a gesture has ended at that time.
To measure the system’s accuracy on this data set, we
report the number of correct detections and the number
of false positives. We define that a correct detection
occurs when the class label is correct, and 50% of the
duration of the estimated gesture overlaps with the
ground truth gesture and vice versa, as proposed by
Williams [55]. A false positive is any detection result that
is not correct.
The inter-model competition algorithm used Subges-
ture Table 1 to detect gestures in the video stream. The
subgesture table was automatically learned from training
data as described in Section 7.1. From inspection of the
table it is evident that the learning algorithm successfully
discovered meaningful subgesture relations.
The number of model states was selected in proportion
to the trajectory length of the digit prototype. The digit
prototype was the training example for that digit that
had the smallest sum of DTW distances to all other
training examples for that digit. In the optimal setting
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Fig. 3. Palm’s Graffiti Digits.

Fig. 4. Example digit gestures for classes “0”, “3”, “6”, and “9”, as performed by a user.

Fig. 5. Example frames from video sequences in our hard test set, showing users in the foreground performing digit
gestures, and other people moving around in the background.

Subgesture Supergestures

“1” {“7”,“9”}

“3” {“2”,“7”}

“4” {“5”,“8”,“9”}

“5” {“8”}

“7” {“2”,“3”}

“9” {“5”,“8”}

TABLE 1

Subgesture table learned from training data.

Subgesture confidences for all pairs of gestures

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 1

2 0 0 0 0 0 0 0 0 0 0

3 0 0 15 0 0 0 0 2 0 0

4 0 0 0 0 0 37 0 0 88 26

5 0 0 0 0 0 0 0 0 197 0

6 0 0 0 0 0 0 0 0 0 0

7 0 0 71 62 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 67 0 0 15 0

TABLE 2

Subgesture confidences computed as described in

Section 7.1. Rows correspond to subgestures and

columns correspond to supergestures.

Easy dataset Hard dataset

K No SR SR No SR SR

DR FP DR FP DR FP DR FP

1 (Oka [29]) 68.3 24 75.6 2 8.5 3 8.5 3

2 79.0 37 91.0 1 23.5 4 23.5 4

3 78.0 51 93.6 4 37.8 7 40.0 4

4 78.6 54 94.6 5 50.7 7 53.5 3

5 77.6 58 94.6 5 62.8 14 67.8 7

6 77.3 59 94.6 5 64.2 22 71.4 11

7 77.0 60 92.6 6 69.2 24 79.2 9

8 77.0 60 90.6 7 67.8 32 81.4 9

10 78.6 57 91.0 6 66.4 42 82.8 14

12 77.0 64 88.0 10 63.5 52 82.8 15

14 77.3 62 84.6 12 62.1 56 82.1 17

15 77.0 61 83.3 11 65.7 51 85.0 13

16 76.6 60 80.6 11 61.4 56 80.7 16

TABLE 3

Detection rate (DR) percentage, and number of false

positives (FP) for different numbers K of candidate hand

regions for frame, for the easy and hard digit datasets.

SR indicates that subgesture relations were used during

the inter-model competition. Note that our method with

K = 1 becomes the CDP method of Oka ( [29]).

(determined using cross-validation), one model state
corresponded to three frames of the prototype.

Table 3 illustrates the detection accuracy rate and
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number of false positives for each test set. For the easy
dataset, the best result without subgesture reasoning
was attained for K = 2, with a detection rate of
237/300 = 79.0% and 37 false positives. Using subgesture
reasoning, the best result was attained for K = 4, 5, 6,
with a detection rate of 284/300 = 94.6%, and only 5
false positives.
For the hard dataset, the best result without subges-
ture reasoning was attained for K = 7, with a detection
rate of 97/140 = 69.2% and 24 false positives. Using
subgesture reasoning, the best result was attained for
K = 15, with a detection rate of 119/140 = 85.0%, and
13 false positives. Table 4 shows the confusion matrix for
the hard dataset.
We note that using subgesture reasoning improves
performance significantly for almost all K and both test
sets, by increasing detection rates and decreasing false
positives. The optimal K value for the hard test set
was 15, compared to 6 for the easy test set, illustrating
that the presence of distractors caused the correct hand
regions to be ranked significantly lower than in the easy
test set. At the same time, we notice that performance
degrades gracefully in the presence of distractors: the op-
timal detection rate drops from 94.6% to 85.0% between
the easy test set and the hard test set. To the best of our
knowledge, methods assuming reliable hand tracking,
or using global features, have not been demonstrated on
scenes where the presence of distractors is comparable
to the presence of distractors in our hard test set.
We note that using K = 1 (i.e., assuming reliable
hand tracking), our method reduces to the continuous
dynamic programming method (CDP) of Oka [29]. As
can be seen from the K = 1 row of Table 3, CDP
yields a relatively low detection rate of 75.6% for the
easy test set. More remarkably, for the hard test set,
CDP leads to a really low detection rate of 8.5%. Any
K 6= 1 produces significantly higher detection rates than
CDP. These results emphasize the advantages of our
method: with a very simple hand detection module, but
allowing multiple candidate hand regions per frame, we
can overcome to a large extent the challenges posed by
the distractors present in the hard test set.
A speed-up factor of 4.2 (in terms of runtime) was
obtained using our pruning method, and the processing
time for spatiotemporal matching and inter-model com-
petition was 0.6 ms per frame. The speed-up obtained
by pruning in this experiment is a somewhat pessimistic
estimate. Pruning depends on several factors including:

1) The similarity between gesture prefixes. In our
experiment all digits start at the top, and therefore
it is difficult to prune based on position early on.

2) The ratio between gesture time and total time.
A small ratio means that the periods in between
gestures are relatively long. During these periods
there is more chance of pruning since the non
gesture patterns would tend to match the models
very poorly. To verify the influence of the gesture
time ratio, we conducted an experiment where we
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Fig. 6. Fraction of visited cells (out of total DP cells) as a

function of fraction of gesturing time (out of total time).

varied the periods of rest between gestures. Fig. 6
shows that the amount of pruning increases as the
rest time in between gestures increases, leading to
a speedup of a factor of 10 for cases where gestures
occupy a small fraction of the input sequence.

On the easy test set, not using pruning, for K = 6
the detection rate drops from 94.6% to 84.3%, and the
number of false positives increases from 5 using pruning
to 7 without pruning. This result illustrates that our
pruning method not only decreases the running time, but
also significantly improves the accuracy of the system,
by pruning away hypotheses that otherwise could lead
to recognition errors.
As a last experiment on the digits dataset, we have
found that decreasing the number of states per model
leads to decreasing accuracy. For the easy test set,
and K = 6, as the number of prototype digit frames
per model state increases from 3 to 4, 6, 8, and 10,
the detection rate drops respectively from 94.6% to
92.0%, 82.0%, 67.3%, and 57.7%.
All training and test sequences from the digit recog-
nition dataset, as well as ground truth files for all those
sequences, are available for viewing/downloading at:
http://cs-people.bu.edu/athitsos/digits.

10.2 ASL Sign Retrieval

In this experiment we consider a gesture-finding tool,
where the system assists the user in efficiently finding
occurrences of an ASL sign in video sequences. ASL has
no standard written form, and video is the standard form
of recording ASL narrative. Retrieving occurrences of
signs in such video can enable content-based search of
narratives that is analogous to keyword-based search of
text documents.
We have experimented with two data sets. The first
data set, used for a preliminary evaluation, is a video
clip of an ASL story. The story is 26,805 frames long
at 30 frames per second. In terms of signs, the story is
1071 signs long. In this experiment we find occurrences
of 3 ASL signs: “BETTER”, “HERE”, and “WOW”. The
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Confusion matrix

Hard dataset, without using subgesture relations

0 1 2 3 4 5 6 7 8 9

0 9 0 0 0 0 0 0 0 0 0

1 1 13 2 1 1 3 0 0 3 5

2 0 0 7 1 0 0 0 0 0 0

3 0 0 0 7 0 0 0 0 0 0

4 0 0 0 0 14 9 0 0 1 3

5 0 0 0 1 0 2 0 0 5 0

6 3 0 0 0 0 0 14 0 0 0

7 0 0 5 5 0 0 0 14 0 0

8 0 0 0 0 0 0 0 0 5 0

9 1 0 0 0 0 0 0 0 0 8

miss 5 1 7 7 0 12 0 0 9 6

Confusion matrix

Hard dataset, using subgesture relations

0 1 2 3 4 5 6 7 8 9

0 10 0 0 0 0 0 0 0 0 0

1 0 13 0 1 1 0 0 0 0 1

2 0 0 12 2 0 0 0 1 0 0

3 0 0 0 11 0 0 0 1 0 0

4 0 0 0 0 14 0 0 0 0 0

5 0 0 0 0 0 10 0 0 0 0

6 3 0 0 0 0 0 13 0 0 0

7 0 0 0 0 0 0 0 12 0 0

8 0 0 0 0 0 1 0 0 14 0

9 1 0 0 0 0 0 0 0 0 11

miss 4 1 2 3 0 4 1 2 0 3

TABLE 4

Confusion matrices for K = 15, for the hard digit dataset. Rows correspond to estimated class labels, and columns

correspond to ground truth labels. For the purpose of computing these matrices, for each detected gesture we find

the nearest-in-time ground-truth gesture, and we increment the matrix entry defined by the class labels of those two

gestures. The “miss” row counts, for each gesture class, the number of occurrences of that class with which no

detection result could be associated.

average sign lengths are: 14 frames for “BETTER”, 14
frames for “HERE”, and 31 frames for ”WOW”. In the
story there are 5 examples of the sign “BETTER”, 9
examples of “HERE”, and 4 examples of “WOW”. Given
the model of the gesture of interest, we associate each
frame of the input sequence with the matching cost of the
optimal warping path going through that frame. Then, a
threshold is chosen manually, in a way that guarantees
that all occurrences of the sign of interest are below that
threshold.

Since we only consider the threshold guaranteeing
100% recall of the signs of interest, our performance
measure is the retrieval ratio, which is defined as the
ratio between the number of frames retrieved using
that threshold and the total number of frames. For each
detection result, all frames from the warping path of
that result are counted as retrieved. In the absence of
a gesture-finding tool, the user would simply have to
review the entire video, which is equivalent to a retrieval
ratio of 1.0. Using our gesture-finding tool, the retrieval
ratio for the signs “BETTER,” “HERE,” and “WOW” is
0.19, 0.11, and 0.07 respectively. We should note that,
based on the number of occurrences of the query signs
and the average length of those occurrences, the the-
oretically optimal result for this experiment would be
0.0026 for “BETTER,” 0.0047 for “HERE,” and 0.0046 for
“WOW.”

A problem with this data set is that we could only find
three signs for which we had enough examples to per-
form off-line training. To perform a more comprehensive
quantitative evaluation, we have used a second data set
of video clips of ASL signs. In every clip a native ASL
signer gestures 24 signs: 7 one-handed signs and 17 two-

handed signs, as listed in Table 5. Each sign belongs to
one of the five types [56] shown in Table 6. Each sign
starts with a particular hand shape and ends with a
particular hand shape, as shown in Table 5.

The video sequences for the two ASL datasets were
captured at 60Hz using an original image size of 480 ×
640 pixels, which was downsampled to 240× 320 pixels
for the experiments. We collected ten sequences where
the signer wears two colored gloves: a green glove on
the dominant (right) hand, and a purple glove on the
nondominant hand (left). Those sequences were used
for learning the sign models. As test sequences, we
collected ten sequences where the signer wears a short
sleeved shirt, thus making it difficult to localize hands
unambiguously at each frame.

The results are shown in Table 7. The performance
measures we report are the number of false positives
generated when the detection threshold is set to detect
all ten occurrences of each sign (i.e., 100% detection
rate), and the retrieval ratio, as defined above. The total
number of frames is 32,060. For most signs the number
of false positives is relatively low and the proportion
of frames retrieved by the system out of the total num-
ber of frames is also relatively small. Two one-handed
signs (“PAST,” and “TELL”) and four two-handed signs
(“BIG,” “FINISH,” “MANY,” and “WOW”) generated
too many false positives. The reason for that is that
those signs have little apparent (2D) motion and/or
their learned models are too simple (contain only a
few states). It is interesting to note that we obtained
a retrieval ratio of 0.07 and 0.25 for “WOW” in the
first and second data set respectively. A different signer
performed “WOW” in each of the two data sets. In the
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One-handed signs

Sign Type Handshapes Average Length

AND 0 5 > 0 19

KNOW X B-L 23

MAN X 5 33

OUT 0 5 > 0 17

PAST 0 B-L 18

TELL 0 1 13

YESTERDAY X A(10) 36

Two-handed signs

Sign Type Handshapes Average Length

ARRIVE 2 B-L/B-L 22

BIG 1 bent-L/bent-L 15

BORN 2 B-L/B-L 34

CAR 1 S/S 63

DECIDE 1 F/F 15

DIFFERENT 1 1/1 15

FINISH 1 5/5 14

HERE 1 B-L/B-L 64

MANY 1 S > 5 16

MAYBE 1 B-L/B-L 62

NOW 1 Y/Y 11

RAIN 1 bent 5/ bent 5 36

READ 3 2/B-L 22

TAKE-OFF 2 B-L/B-L 24

TOGETHER 1 A/A (10/10) 13

WHAT 1 5/5 42

WOW 1 bent 5 45

TABLE 5

ASL signs used in experiments: 7 one-handed signs and

17 two-handed signs. Sign types are based on Battison

[56] (see Table 6). In the Handshapes column, start and

end shapes are depicted as start > end, dominant and

nondominant hands are depicted as dominant /

nondominant.

Sign Type Description

Type 0 One handed, not contacting the body

Type X One handed, contacting the body (but not

the other hand)

Type 1 Two handed, both moving, synchronous

or alternating movements

Type 2 Two handed, one active, one passive,

same handshape

Type 3 Two handed, one active, one passive,

different handshape

TABLE 6

Classification of signs based on number of hands [56].

first data set, the examples of “WOW” exhibited more
motion, thus making it easier to identify them compared
to the second experiment.
Subgesture relations were not used in these sign re-

One-handed signs

Sign # False Positives Retrieval Ratio

AND 26 1/51

KNOW 6 1/149

MAN 47 1/22

OUT 2 1/138

PAST 637 1/8

TELL 390 1/37

YESTERDAY 0 1/112

Two-handed signs

Sign # False Positives Retrieval Ratio

ARRIVE 0 1/139

BIG 249 1/33

BORN 4 1/137

CAR 0 1/64

DECIDE 7 1/120

DIFFERENT 0 1/572

FINISH 37 1/85

HERE 1 1/47

MANY 164 1/38

MAYBE 13 1/29

NOW 65 1/78

RAIN 35 1/48

READ 0 1/159

TAKE-OFF 0 1/324

WHAT 8 1/77

WOW 253 1/4

TABLE 7

Results of spotting one-handed signs and two-handed

signs for the second ASL video dataset. The false

positive rate is given for 100% detection rate. The

retrieval ratio is the fraction between the number of

retrieved frames and the total number of frames.

trieval experiments. For the first of the two datasets we
have used, there was insufficient training data available
to learn the subgesture table. That said, subgesture rela-
tions are useful when available. In the general case, the
ASL sequences on which sign retrieval can be performed
use an unrestricted vocabulary of hundreds or thousands
of signs. In many cases, a trained model is not available
for a large number of those signs, and learning subges-
ture relations requires the availability of such models.

In our ASL retrieval experiments there were five signs
with repetitive motion: “WOW,” “CAR,” “MAYBE,”
“RAIN,” and “WHAT”. The models for those signs
were trained in the same way the other models were
trained, even though different training examples of a
particular sign had a different number of repetitions.
Identifying more appropriate training methods for such
signs remains a topic for future investigation.
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11 DISCUSSION AND CONCLUSIONS

This paper presented a novel gesture spotting algorithm
that is accurate and efficient, is purely vision-based, and
can robustly recognize gestures, even when the user
gestures without any aiding devices in front of a com-
plex background. The proposed algorithm can recognize
gestures using a fairly simple hand detection module
that yields multiple candidates. The system does not
break down in the presence of a cluttered background,
multiple moving objects, multiple skin-colored image
regions, and users wearing short sleeve shirts. It is
indicative that, in our experiments on the hard digit
dataset, the proposed algorithm increases the correct
detection rate tenfold, from 8.5% to 85%, compared to
the continuous dynamic programming method of Oka
[29], which assumes reliable hand detection results.

A promising direction for improving both accuracy
and efficiency is to use a cascade approach, where effi-
cient but less accurate features are used for spatiotempo-
ral matching, and expensive but more accurate features
are used for higher-level gesture recognition and ver-
ification. We have performed a preliminary evaluation
of this approach, by adding to the proposed system a
verification module that is based on hand appearance in
specific states of the model. This led to promising results,
as detailed in [54]. For example, by applying the verifi-
cation classifier to all instances of recognition of the sign
“NOW”, the number of false positives decreased from 65
to only 12, without rejecting any true appearances of the
gesture. This result is very encouraging, indicating that
verification and, more generally, a cascaded approach,
can play a significant role in improving system perfor-
mance.

It has been demonstrated that language models im-
prove the accuracy of continuous sign language recog-
nition systems [6], [43], [44], [46]. Even relatively simple
language models, such as unigram (Bauer et al. [44]),
bigram (Bauer et al. [44]), and Part of Speech (Starner et
al. [6]) models, provide very useful priors about gesture
sequences and are often combined with data likelihood
in a Bayesian framework to provide the posterior prob-
abilities of hypothesized gesture sequences. Although
language modeling is likely to improve the results of
our ASL sign retrieval tool this is not the main focus
of our paper. Furthermore, some vision-based gesture
recognition systems for HCI may not be associated with
a language model, allowing instead command gestures
to appear in arbitrary order.

Template-based approaches like CDP (Oka [29]) or
DTW [34], [35] have the advantage that only one ex-
ample is needed, but they lack a statistical model for
variations. On the other hand, higher accuracy is ex-
pected when using more expressive dynamic models,
such as segmental Markov models (Ostendorff et al.
[52]) or Conditional Random Fields [39], [40], which
however require a large amount of training data. We
have instead proposed a hybrid approach, where we

estimate a Gaussian model for the observation probabil-
ities (like an HMM), but employ the uniform transition
probability model of DTW. Such an approach has also
been used for online handwritten character recognition
(Bahlmann and Burkhardt [50]). Overall, we believe that
the simple dynamic models used in this paper are a good
compromise between template-based methods and more
expressive dynamic models, given the moderate amount
of training data available in our data sets.

An interesting topic for future work is formulating
a more general inter-model competition algorithm. In
this work, a few simple rules coupled with learned
subgesture relations have been demonstrated to perform
quite well. At the same time, it will be interesting to
explore formulations based on model selection methods,
such as MDL, that can integrate information from model
matching costs and subgesture relations.
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